

Shanghai University of Finance & Economics

2020 Summer Program

CHEM 101 Introduction to Chemistry with Lab

Course Outline

Term: June 01-July 03,2020

Course Code: CHEM 101

Instructor: Todd A. Wells, Ph.D.

Home Institution: University of Denver

Office Hours: By appointment

Email: todd.wells@du.edu

Credit: 4

Course Description: This course is a study of the fundamentals of chemistry. A survey of atomic structure, periodicity, bonding, nomenclature, stoichiometry, gas laws, and solution chemistry is provided for those students with no background in these areas.

Lecture: The format of class will be a combination of traditional lecture format, problem solving, group discussions, and laboratory exercises. I will summarize new material and present illustrations and examples. In lecture, I WILL NOT identify and describe every detail you will read in the text and any supplemental materials. I will, however, emphasize the important topics covered in the reading as well as problem solving strategies when appropriate. You should stop me at any time if you have questions about the material being covered.

In the problem solving, material from the lecture will be explored in greater detail. We will work on specific "challenge problems" and any questions you have on the material covered in lecture or homework problems.

Reading: You are expected to complete the assigned reading prior to the class lecture. After lecture, you should reread the assigned text. I recommend that you understand the material and how to solve the sample problems before proceeding to the next section. At the end of each chapter, a summary of important equations and terms is provided that should prove helpful in the preparation for exams.

Course Learning Outcomes:

- 1. Apply significant figures correctly in measurements and calculations.
- 2. Use dimensional analysis to solve a variety of problems.
- 3. Use the periodic table to assist in explaining chemical bonding, polarity, and physical and chemical properties of elements.
- 4. Calculate amounts of chemical species using information from chemical formulas and chemical equations.
- 5. Correlate information from balanced chemical equations to the microscopic scale.
- 6. Explain atomic structure using the quantum mechanical model of the atom
- 7. Calculate the mathematical relationship between variables after graphing the experimental data.
- 8. Apply knowledge of chemistry principles to real world situations.

Required Textbooks: We will also use an online textbook found at OpenStax Chemistry (open source e-book): https://openstax.org/details/books/chemistry-atoms-first-2e

Homework: Each lecture has a group of homework problems assigned to it. The problems are chosen to prepare you for the hour exams. If you understand and can do all the homework, you probably will do well on the exams. To get the most benefit from homework, you should **do the assignments on schedule**. It is important to keep up with these assignments!

Class Activities: Class activities will allow you to apply your knowledge. These activities may be more challenging than the assigned homework. The class activities will be graded.

Exams: There are two hour exams during the course, plus a cumulative final exam. Each exam counts 200 points. Exam problems will be similar to the problems assigned as homework and the problems worked in class.

Grading & Evaluation:

Your final grade is based on a maximum of 1000 points, distributed as follows:

Hour exams (200 points each)	400 points
Final exam	200 points
Homework	100 points
Class Activities	100 points
Lab	200 points

Grade Ranges

$A \ge 94\%$	B- 80-83%	D+ 67-69%
A- 90-93%	C+ 77-79%	D 64-66%
B+ 87-89%	C 74-76%	D- 60-63%
B 84-86%	C- 70-73%	$F \le 59$

Course Schedule:

Week1

- 1. Matter and Energy
- 2. Atoms/elements
- 3. Light, electrons and atomic theory
- 4. Electronic configuration
- 5. Periodic Table

Lab1 - Lighting the way to atomic structure

Week2

- 6. Periodic Trends
- 7. Compounds
- 8. Chemical Bonds
- 9. Lewis structures
- 10. Molecules and shapes of moleculesLab2 Periodic Trends and Electron Configuration

Week3

- 11. Problem solving
- 12. Grams, Moles and Mass percent
- 13. Chemical Reactions

- 14. Balanced Chemical reactions
- 15. Solutions, Solubility and precipitationreactions Lab3 A look at Chemical Formulas

Week4

- 16. Acids and Bases
- 17. Acid Base reactions
- 18. Oxidations and reductions
- 19. Oxidation reduction reactions
- 20. Balancing redox equations

Lab4 – The reactions of Copper

Week5

- 21. Limiting reactant and yield
- 22. Intermolecular forces and water
- 23. Solutions-homogeneous and heterogeneous
- 24. mass percent, molarity
- 25. Dilutions