Seoul Campus 02450 서울특별시 동대문구 이문로 107 tel 02.2173.2093 fax 02.960.7898 107, Imun-ro, Dongdaemun-gu, Seoul, 02450, Korea Global Campus 17035 경기도 용인시 처인구 모현면 외대로 81 tel 031.330.4114 fax 031.333.1708 81, Oedae-ro, Mohyeon-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 17035, Korea

Hankuk University of Foreign Studies

2025 Summer Session

MATH 111 Calculus 1

Course Outline

Course Code: MATH 111

Instructor: Professor Vadim Olshevsky

Home Institution: University of Connecticut

Office Hours: By Appointment

Email: olshevsky@gmail.com

Credit: 4

Class Hours:

This course will have 52 class hours, including 32 lecture hours, professor 8 office hours, 8-hour TA discussion sessions, 4-hour review sessions.

Course Description:Calculus 1 is the first of a sequence of three courses in calculus covering basic calculus. Topics to be covered include a review of functions, limits, differentiation, applications of the derivative, and introduction of integration.

Course Objectives: The objective of the course is to build an understanding of the basic principles and applications of differential and integral calculus through lectures, homework, discussion, quizzes, and exams.

Required Textbooks:

Calculus: Early Transcendentals, 8th Edition, by James Stewart with WebAssign Access Code. Can be purchased directly at

https://www.cengage.com/c/calculus-early-transcendentals-8e-stewart/9781337771498#compare-buying-options

Seoul Campus 02450 서울특별시 동대문구 이문로 107 tel 02.2173.2093 fax 02.960.7898 107, Imun-ro, Dongdaemun-gu, Seoul, 02450, Korea Global Campus 17035 경기도 용인시 처인구 모현면 외대로 81 tel 031.330.4114 fax 031.333.1708 81, Oedae-ro, Mohyeon-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 17035, Korea

It is important that you purchase both the textbook and the WebAssign code, the latter is necessary for the homework assignments.

Grading & Evaluation

Attendance and participation: 10%

Homework: 30%

Midterm: 30%

Final: 30%

Grading System $(1 \sim 100)$

A+: 96 - 100	A:91-95
B+:86 - 90	B:81 - 85
C+: 76 - 80	C:71 - 75
D+: 66 - 70	D: 60 - 65
F:0-59	
Pa : Pass	Fa : Fail

Course Schedule

Week1 Functions: definition, representation, types, operations, mathematical models. Limits and continuity: limit of a function, the limit law, continuity, definition of a limit. Derivatives: Definition, rates of change

Week2 Derivatives: Differentiation rules: polynomial, trigonometric, inverse, logarithmic, exponential, implicit functions. The product, quotient, and chain rules.

Week3 Applications of differentiation: Higher derivatives, linear approximation and differentials, minima and maxima, the Mean Value Theorem, L'Hôpital's rule, limits at infinity and asymptotes, curve sketching.

Week4 Applications of differentiation: Applied optimization problems Integrals (Antiderivatives, approximating areas, the definite integral).

Integrals: The Fundamental Theorem of Calculus, substitution rule.

Detailed Course Outline

Week	Chapter	Topic

Seoul Campus 02450 서울특별시 동대문구 이문로 107 tel 02.2173.2093 fax 02.960.7898 107, Imun-ro, Dongdaemun-gu, Seoul, 02450, Korea Global Campus 17035 경기도 용인시 처인구 모현면 외대로 81 tel 031.330.4114 fax 031.333.1708 81, Oedae-ro, Mohyeon-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do, 17035, Korea

1	1 Functions	1.0 Preview of Calculus
		1.1 Four ways to represent a function
		1.2 Mathematical models. A catalog of essential functions.
		1.3 New functions from old functions
		1.5 Exponential Functions
		1.6 Inverse Functions and logarithms
	2 Limits and continuit	y 2.1 The tangent and velocity problems
		2.2. The limit of a function
	3 Derivatives	2.3 The limit laws.
		2.4 Precise definition of a limit
2		2.5 Continuity
3 Derivatives		2.6 Limits at infinity. Horizontal assimptotes.
	3 Derivatives	2.7. Derivatives and the rates of change.
		2.8 Derivatives as a function
		3.1 Derivatives of Polynomials and Exponentials.
	C.T.	3.2 Product and quotient rules
	A 2	3.3 Derivatives of trigonometric functions
	CS /	3.4 The chain rule
		3.6 Derivatives of logarithms
3	2/1	Exam 1
	,0//	3.7 Rates of change
	~ /	3.8 Exponential growth and decay
	4 Applications of	3.10 Linear Approximation and Differentials
	derivatives	4.1 Maxima and minima
	5 I \	4.2 The Mean Value Theorem
	201 1	4.3 Derivatives and the shape of the graph
		4.4 L'Hôpital's rule
4	'C3	4.5 Curve sketching
	of l	4.9 Anti-derivatives
	12.4	5.1 Approximating areas
		5.2 The definite integral
	MACO	5.3 The Fundamental Theorem of Calculus
		5.5 Substitution Rule
	7 1/2	Exam 2